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A New Integral Representation of the 
Bessel Coefficients 

By P. Razelos 

The modified Bessel coefficients In are defined by the series [1] 
2q+,n 

00 

( 1 ) In(t) = 0 + 

with the integral representation [1] 

(2) In(t) = t etoos cosnxdx. 
7r 

An integral representation of the coefficients I"(t) is presented here where the path 
of integration is extended to infinity. 

THEOREM: The integral 

2 tcoox sinlex 
An(t) =- e cos nx s dx 

7r x 

is the modifted coefficient In(t) for any 0 < e < 1. There are many ways by which 
the theorem can be proved, but we give here the following proof which consists of a 
straightforward evaluation of the integral An . The function et COB is expanded in a 
power series (which is absolutely convergent for all t) and we then integrate term 
by term. 

(3) et Cos x - (tcosx)Y 
r-0 r! 

Let us define 

(4) Q = - cos x cos nx Sf dx. 
7r x 

Then 
ooQntr 

(5) An(t) Qnr trl 

Introducing the expansion 

(6) cos x= c1 Es(7 (k) COS( - 2k)x 

(where 6 = 1 or 2 for r even or odd, respectively) into (4), we obtain 

(7) Qnr =r2 
E (k) [g(r-2k + n) + g(r-2k-n)], 
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where 

2 go sin EX 
(8) g(Y) cos Yz sl dx = 0, 1,- 

for I y/e I greater than, less than, or equal to one, respectively [2]. Therefore, the 
only term which is nonzero in (7) is the term g(O), if it exists. 

Then 

(9) Qn( = 2) r-n r+ n r n and r, n both even or odd, 

(2 2 

(10) Q, _ 0 for r < n or r, n one even, one odd. 

We can now write 

(11) r - n = 2q, 

r + n = 2(q + n). 

Thus, 

rt 
(12) Qn = 

22rq!(q + n)! 

Substituting (12) into (5), we obtain 

(13) A() n 
(13) ~~An (t) = E \2 = In. Q.E.D. 

q.oq!(q + n)= 

A similar expression can be readily obtained for the coefficients Jn(t). The value of 
?= gives the following interesting result. Let us define 

(14) Bn(t) =- e o cos vx sin(x/2) dvdx. 

It can be easily shown that Bn(t) = In(t). Consider now the integral 

B(t) = Iv t dv 

=2 J dv f 2etgo 0xCoS(vX) sin(x/2)dx 
7r x 

= lim -r dv I' 2et csZcos(vx)cos(vy) sin(X/2)d 
1-0 7r x 

2et Cos0 sin y/2 e 

by Fourier's theorem. Clearly B(t) = % Bn (t). 
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Footnote to the Evaluation of Certain Complex 
Elliptic Integrals 

By C. D. Sutherland 

The formulas for evaluating the elliptic integral of the third kind wi h a complex 
parameter as given by Byrd and Friedman [1] have been corrected aild simplified 
iby Lang and Stevens [2]. There is, however, a further correction necessary in these 
latter results. 

The integral to be evaluated is 

dO I = (a, + ib)f (1_c2sin2O)A' 

where a 2 iS complex and A = V(\1 - k2 sin2 0). In the formulas for evaluating I 
there appears the quantity 

72 P m I = _M2 tan '(p2V/h2), T2 1 1+h2 X2 -v/h2 
where 

sin 4 cos 4 

P2= (-1 + m2 sin2 ) 

We will consider the case where m2 < - 1. If this occurs we see that as 0 goes 
to 7r/2, either P2 -X 0 (M2 = -1) and [tan-' (P2 \/h2)] -- 7r/2, or P2 -- 0 through 
negative values (M2 <-1) and [tan-' (p2 \/h2)] -f 7r (and not to zero). To avoid 
overlooking this possibility the proper representation for T2 is 

2=V2Cos ACos4 ) o 72 h2 
= 

V \/(h2sin2 4 + A2 cos2 ) for m2=-1, 

m2 cos-A A(1 + m2 sin )2 for m F) 
2 \ h2co \V(h2i i2 40 C2 q5+ A2(1 + Msin2 40)2))frm 

-1 

It is to be noted, in particular, that the forinulas for the real and imaginary 
parts of the complete integral should contain a term involving T2 whenever m2 <-1. 
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Equation (416.00') in reference [2] and equations (416.00) to (419.00) in reference 
[1] do not contain this term and should be changed. 
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On Davis' Method of Estimating Quadrature 
Errors 

By Y. T. Lo, S. W. Lee, and B. Sun 

In quadrature method the error is traditionally estimated in terms of the 
high derivatives of the integrand. The drawbacks of this method are well known. 
Some ten years ago, Davis [1], Davis and Rabinowitz [2] introduced an interesting 
new method in estimating the error for analytic functions in terms of their norms. 
Briefly, for any function f(z) belonging to L2(&p), where g, is a region in the com- 
plex z-plane, bounded by an ellipse with foci at (-1, 0) and (1, 0), the error E 
associated with the quadrature 

+1 N 

(1) L f(x) dx E akf(Xk) + E(f) 
k-O 

is bounded by 

(2) | E(f) I I as| f I|E I 

In the above relation, 

11 f II&P = [f I f(Z) 12 dx dyI 

and a, depends only orn the ellipse 8, and the quadrature rule R. 
Davis and Rabinowitz [2] have given a short table of aR for a few commonly 

used quadrature rules and various values of the semi-major axis a. To test their 
results, we have assumed for f a simple trigonometric function whose integral can be 
easily evaluated and computed. By comparing this with those obtained by various 
quadratures it turns out that the actual errors are larger than the bound aRIJ f Ip* . 
Thus it leads us to believe that their tabulated values of aR are in error. In a private 
communication, Davis agreed with us and encouraged us to recompute their table. 
Recently we completed this task. The results are tabulated below, where a few more 
cases and a wider range in semi-major axis a are included. To our disappointment, 
it is found that these values are much greater than theirs, nearly by a factor of 4. 
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